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Branch Feature Fusion Convolution Network for
Remote Sensing Scene Classification

Cuiping Shi , Member, IEEE, Tao Wang, and Liguo Wang , Member, IEEE

Abstract—Convolutional neural networks (CNNs) have out-
standing advantages in the classification of remote sensing scenes.
Deep CNN models with better classification performance typically
have high complexity, whereas shallow CNN models with low com-
plexity rarely achieve good classification performance for remote
sensing images with complex spatial structures. In this article,
we proposed a new lightweight CNN classification method based
on branch feature fusion (LCNN-BFF) for remote sensing scene
classification. In contrast to a conventional single linear convolution
structure, the proposed model had a bilinear feature extraction
structure. The BFF method was utilized to fuse the feature in-
formation extracted from the two branches, which improved the
classification accuracy. In addition, combining depthwise separable
convolution and conventional convolution to extract image features
greatly reduced the complexity of the model on the premise of
ensuring the accuracy of classification. We tested the method on
four standard datasets. The experimental results showed that,
compared with recent classification methods, the number of weight
parameters of the proposed method only accounted for less than
5% of the other methods; however, the classification accuracy
was equivalent to or even superior to certain high-performance
classification methods.

Index Terms—Combined convolution (CConv) structures,
convolutional neural network (CNN), depthwise separable
convolution (DSC), feature extraction, feature fusion, remote
sensing scene classification.

I. INTRODUCTION

MORE and more researchers have performed research
work in the field of remote sensing. Remote sensing
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scene classification assigns a specific label based on the image
content of a random scene [1]–[3]. The relevant research results
are widely used in many important fields, such as national
defense security, climate change monitoring, environmental
monitoring and management, land classification for different
purposes, ground target identification and detection, loss assess-
ment in natural disasters, and other important fields [4]–[8].

Remote sensing scene classification is very challenging re-
search work. Due to the difference of distance and the diversity
of landforms, scene images typically have a complex spatial
structure, which easily produces high within-class differences
and between-class similarities. This makes it difficult to accu-
rately classify remote sensing scenes. Deep learning technology
provides a new way to solve these problems. This technology
can learn representative and differentiated abstract features from
data and was considered one of the top ten breakthrough tech-
nologies in 2013. In recent years, deep learning has become a re-
search hotspot in the field of computer vision, and has been grad-
ually introduced to the field of geosciences and remote sensing
for intelligent algorithm research and big data analysis [9], [10].

Convolutional neural networks (CNNs) are one of the most
representative neural networks in the field of deep learning
technology, and they show excellent performance in the field
of computer vision [11]–[13]. In recent years, CNNs have been
widely used in remote sensing image classification. As deep
CNN models can extract more representative image features,
the classification of remote sensing image scenes with complex
spatial structures typically demonstrates better performance. At
present, in order to improve the performance of remote sensing
image classification, deep CNN models are used in many studies
on remote sensing scene classification [46], [47].

Although the deeper networks can effectively extract the
representative features of images, there are still two difficul-
ties in remote sensing scene image classification. On the one
hand, remote sensing scene images typically have high within-
class differences and between-class similarities. Fig. 1 shows
some image examples, which are from the NWPU-RESISC45
(NWPU) dataset [14]. We can see that, in this case, it is very
difficult to classify remote sensing scene images accurately. On
the other hand, deeper networks often have higher computa-
tional complexity. With the development of imaging technology,
the resolution of remote sensing images is increasing, and the
amount of data is large, which makes the data processing more
time consuming for the deep CNN models with high complexity.
In practical applications, not only the accuracy of scene classi-
fication but also the time-consumption of the model should also
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Fig. 1. Examples of remote sensing scene images. (a) Scenes with large within-
class differences. (b) Scenes with high between-class similarities.

be considered. Aiming at these two problems, in this article, we
proposed a new lightweight CNN classification method based
on branch feature fusion (LCNN-BFF). The network structure
consists of nine parts (Groups 1–9). Groups 1–8 are the feature
extraction structure and Group 9 is the classification layer.
Groups 4–7 adopt the structure of bilinear convolution feature
extraction, which utilizes two branches to extract image features.

According to the structure of bilinear feature extraction, we
proposed a BFF method to fuse the image feature information
extracted from the two branches. To solve the problem of model
complexity caused by a bilinear convolution structure, the
depthwise separable convolution (DSC) method was adopted in
this article. In addition, two convolution methods, i.e., DSC and
CConv, were combined to extract scene image features, which
can effectively avoid insufficient feature extraction and reduce
the number of weight parameters. The experimental results
showed that the proposed method outperformed not only the
classical CNN, but also, in terms of certain evaluation indexes,
some of the state-of-the-art classification methods presented
recently.

Our main contributions in this article are listed as follows.
1) Aiming at the problems of high within-class differences

and between-class similarities in remote sensing scene im-
ages, we proposed a bilinear convolution feature extraction
structure and BFF method. Through BFF, the different
features extracted from two branches were fused and
complemented, which greatly improved the classification
accuracy.

2) In view of the high complexity of the model caused by
the structure of bilinear convolution feature extraction, we

proposed a new convolution strategy, which combined the
two convolution methods of light convolution DSC and
CConv. This method not only reduced the complexity of
the model, but also improved the classification accuracy
further.

The remainder of this article is organized as follows. In
Section II, we discuss the related works of remote sensing
scene classification. In Section III, the proposed LCNN-BFF
method is described in detail. In Section IV, in order to prove the
high effectiveness of the proposed method, we performed some
numerical experiments, and compared the results with certain
state-of-the-art classification methods. Finally, our conclusions
and discussions are provided in Section V.

II. RELATED WORK

A CNN is one of the most representative neural networks
in deep learning technology. In the field of remote sensing, a
CNN is applied in many applications, especially in target detec-
tion [15], [16], semantic annotation [65], high-resolution image
classification [17], [18], hyperspectral image classification [19],
[20], [66], and remote sensing scene classification [21]–[24].
Various methods based on a CNN have shown excellent perfor-
mance in the field of remote sensing, mainly as a deep neural
network can extract better image representation features, for
example, VGG16 [25], AlexNet [26], MobileNet [27], and other
network models [41], [42].

In particular, the MobileNet network was proposed as a
lightweight network that requires less parameters and computa-
tion, but with better performance than certain deep networks with
high complexity. In the MobileNet network, a new convolution
method, called DSC, was proposed, which is widely used in
image classification [67], [68]. In recent years, researchers have
made great efforts in remote sensing scene classification. In ad-
dition to the above-mentioned deep CNN feature learning-based
methods, there are also the handcrafted feature-based methods
and the unsupervised feature learning-based methods [14]. The
following is a brief introduction to these works.

A. Handcrafted Feature-Based Methods

The early works of scene classification are mainly handcrafted
feature-based methods, which often use handcrafted feature
descriptors to extract the features of remote sensing scenes.
Different feature descriptors are chosen, among which the most
widely used ones include, but are not limited to, color histograms
[28], texture descriptors [29], GIST [30], scale-invariant feature
transform (SIFT) [31], and histogram of oriented gradients
(HOG) [32]. However, the feature extraction ability of the hand-
crafted methods is poor. In using this method to classify remote
sensing scene images with rich details, not only is the work heavy
but the classification performance is also insufficient, which
makes it difficult to meet the practical applications of remote
sensing scene classification.

B. Unsupervised Feature Learning Based Methods

To overcome the limitations of manual operation, many re-
searchers proposed automatic feature extraction methods, i.e.,



5196 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

unsupervised feature learning. Unsupervised feature learning
can extract features from images automatically. In this way,
more features of images can be obtained. Common unsupervised
feature learning methods include K-means clustering, sparse
coding [33], and autoencoders [34]. In [35], Zhu et al. proposed
a local–global feature bag-of-visual-words scene classifier for
high spatial resolution remote sensing imagery. In this method,
the shape-based invariant texture index was designed as the
global texture feature, the mean and standard deviation values
were employed as the local spectral feature, and the dense SIFT
feature was utilized as the structural feature.

In [36], Cheriyadat adopted dense low-level feature descrip-
tors to characterize the local spatial patterns. These unlabeled
feature measurements were exploited in a novel way to learn
a set of base functions. The low-level feature descriptors were
encoded in terms of the base functions to generate new sparse
representation for the feature descriptors. In [37], Cheng et al.
proposed a new and effective autoencoder-based method to learn
a shared midlevel visual dictionary. The discriminative midlevel
visual elements, rather than individual pixels or low-level image
features, were used to represent images. Overall, the classifi-
cation performance of the unsupervised feature learning-based
method was typically better than that of the handcrafted-based
method. However, it is still difficult to further improve the per-
formance of remote sensing scene classification as the learned
features of this method are often low-level image features, and
thus the description ability of the features is limited.

C. Deep CNN Feature Learning Based Methods

The deep CNN feature learning-based method is to use a
CNN model with a deep feature extraction structure to auto-
matically learn more representative and discriminative features
from the data. In recent years, due to the excellent performance
of CNNs in the field of computer vision, many researchers
proposed a variety of image classification methods based on
CNNs [38]–[48]. In [14], Cheng et al. conducted experiments on
the NWPU-RESISC45 dataset based on VGG16, AlexNet, and
GoogleNet [49], and found that the classification performance
based on CNN deep feature learning was far better than the first
two methods.

In [50], Lu et al. proposed a remote sensing scene classifica-
tion method based on an end-to-end feature aggregation CNN
(FACNN). The semantic label was considered to learn the scene
feature representation. In an FACNN, they proposed a super-
vised convolutional feature encoding module and a progressive
aggregation strategy to leverage the semantic label information
to aggregate the intermediate features, which improved the
classification accuracy. Li et al. proposed a hybrid architecture,
called aggregated deep Fisher feature (ADFF). In a pretrained
CNN model, the optimal encoding layer was utilized, which
naturally fused the local and global image information in a novel
way, and thus the ability of semantic acquisition was further
enhanced [51].

Cheng et al. proposed a simple but effective method based on
three classic CNN depth models to learn discriminative CNN
(DCNN). The proposed DCNN models were trained by opti-
mizing a new discriminative objective function. The problems

of high within-class differences and between-class similarities
in remote sensing scene images were avoided effectively, and
the classification accuracy was further improved [52]. He et al.
proposed a multilayer stacked covariance pooling (MSCP). In
this method, they used the pretrained network model to extract
the multilayer convolution feature maps and to stack these
feature maps, which was able to improve the classification
accuracy [53].

In [54], a skip connected covariance network (SCCov) was
proposed. This method embedded the modules of skip connec-
tions and covariance pooling into the CNN model, and superim-
posed the feature mapping information of different resolutions,
which could effectively avoid the influence of different resolu-
tion images in the remote sensing datasets, and improved the
classification accuracy. In [66], a simple yet effective method
was proposed to extract hierarchical deep spatial features for
hyperspectral image classification by exploring the power of
off-the-shelf CNN models. In [69], a part-based CNN (P-CNN)
was proposed for fine-grained visual categorization, which
aimed to classify subordinate categories. In [70], a multisource
compensation network was proposed to solve the problems of
distribution differences and category incompleteness.

III. METHODOLOGY

A. Overall Structure of the Proposed Method

The proposed LCNN-BFF network was composed of nine
parts (Groups 1–9), and this structure is shown in Fig. 2. Ac-
cording to the structure of the first three modules in the VGG16
network and the strategy of reducing model complexity intro-
duced in this article, Groups 1–3 were defined. In Groups 1–3,
the maximum pooling layer was used to downsample the remote
sensing images, to reduce the spatial dimensions of the images,
retain the main features of the images, and avoid the problem of
overfitting. Groups 4–8 were mainly defined to extract represen-
tative features. Groups 4–7 used a bilinear convolution structure
to extract more abundant feature information.

According to the bilinear convolution structure, the BFF
method was proposed. BFF fuses the feature information ex-
tracted from the two branches to obtain more effective feature
information. Part C of this section gives the difference between
the feature maps extracted from the two branches and the feature
maps fused using the BFF method. In addition, the number of
convolution channels was increased in Groups 5 and 8 to widen
the network so that it could learn more features [55], [56]. For the
specific channel number settings of each group, please refer to
Section IV-B. Group 9 was defined for classification, to convert
the extracted feature information into the probability of each
scene class.

In the feature extraction structure (Groups 1–8), lightweight
convolution DSC and CConv were combined to extract image
features, which greatly reduced the complexity of the model.
Batch normalization (BN) [57] was used to normalize the output
of each volume accumulation layer, and then the rectified linear
unit function was used to activate the neurons. After BN process-
ing, the learning speed of the model could be accelerated and
converged quickly. To a certain extent, this can avoid the problem
of the gradient disappearing with the deepening of the network,
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Fig. 2. Overall structure of the proposed LCNN-BFF method. DSC and conventional convolution (CConv).

and improve the generalization ability of the model. In addition,
due to the small number of images in the divided training set, this
may cause the problem of overfitting in the process of network
training. Therefore, an L2 regularization penalty was added to
the weight of the convolution layer, and the penalty coefficient
was 0.0005.

In Group 9, the global average pooling (GAP) [58] was used
instead of the flatten layer, which can reduce the model size and
overfitting. Specifically, suppose the output result of the last con-
volution layer is D = [d1; d2; . . . ; di . . . ; dN ] ∈ RN×H×W×C ,
where [;;;] represents the cascade operation along the batch
dimension, and R represents the real number set. In addition, N,
H, W, and C represent the batch size, height, width, and channel
number of the input data, respectively. If the output result of GAP
layer isG = [g1; g2; . . . ; gi . . . ; gN ] ∈ RN×C , the processing of
gap layer to ∀di ∈ RH×W×C can be represented as

gi =

∑H
h=1

∑W
w=1 di

H ×W
. (1)

From formula (1), GAP makes the feature mapping of the
convolution output of the last layer more intuitively to each
category. GAP summarizes the information of input space and
performs a more robust operation on the input space information.
As the weight parameters are not needed in the GAP layer, the
overfitting phenomenon in the process of the training model can
be reduced. In this article, the SoftMax classifier was used for
classification. If the result of any output gi ∈ G processed by a
fully connected (FC) layer with the number of cells as the num-
ber of classification Z is V← [ v1 v2 . . . vj . . . vZ ] ≡ FC(gi),
and the output result of SoftMax is S = [ s1 s2 . . . sj . . . sZ ],
then the output result S of SoftMax classifier can be represented
as

sj =
eV[j−1]

∑Z−1
k=0 e

V[k]
. (2)

Here, V[j − 1] represents the jth element in V (index number
starts from 0). The classified cross-entropy loss is adopted as a
loss function. If Q = [ q1 q2 . . . qj . . . qZ ] is used to represent

the coding result of the input sample label, the loss function is

L = −
Z∑

j=1

qj log(sj). (3)

Here, Z represents the number of categories, sj represents the
output result of SoftMax, and the input sample label adopts the
one-hot coding rule.

B. Strategy to Reduce Model Complexity

As the weight parameters and computation of the proposed
method are mainly concentrated in the feature extraction struc-
ture, reducing the number of weight parameters and computation
in the feature extraction process is an effective method to reduce
the complexity of the model. In Groups 1–8 of the LCNN-BFF
network, two convolution methods, CConv and light convolution
DSC, were used to extract depth representative image features.
Compared with CConv, the advantages and disadvantages of
DSC are described as follows. Suppose an RGB image M,
M ∈ RW×W×3, and W × W represents the size of the image.
Without considering bias, there are K convolution kernels with
f× f size. The convolution step size S is 1, and the filling size Pad
is 0. The convolution process of CConv is that each convolution
kernel is convoluted with each channel of the image, and one
convolution kernel is convoluted with the feature maps of three
channels to obtain three tensors. The result of adding these three
tensors is a 2-D feature map. Suppose AK is the kth convolution
kernel, the kth 2-D feature map of convolution output can be
represented as

BK = AK ⊗M (4)

where “�” represents the convolution operator. If the size of the
output feature map calculated by T = W−f+2Pad

S + 1 is T× T,
the output Mco of image M after CConv can be represented as

Mco = [B1;B2;B3, . . . ;BK ] ∈ RT×T×K (5)

where [;;;] represents a cascading operation along the channel
dimension.
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Fig. 3. Three combined structures of convolution.

Different from CConv, the process of DSC includes the deep
convolution process and the point-by-point convolution process.
In the process of deep convolution, an image is divided into
components based on the number of input channels, and then
each component is convoluted with different convolution ker-
nels. Each component of the image is Mi ∈ RW×W , i = 1, 2, 3.
The three components are convoluted with three different con-
volution kernels (Ui ∈ Rf×f , i = 1, 2, 3) with f × f size. The
results can be represented as

Oi = Mi ⊗ Ui, i = 1, 2, 3 (6)

O = [O1;O2;O3] ∈ RT×T×3. (7)

The point-by-point convolution process is used to convolute
the output of the deep convolution processO with K convolution
kernels of 1× 1 size. The results of each feature map are shown
in (4) and (5). The dimension of the DSC resultMdo ∈ RT×T×K

is the same as that of the CConv result. The number of weight
parameters of two convolutions is different. The number of
weight parameters of CConv can be represented as

Pc = Ci × f × f × Co. (8)

The number of weight parameters of DSC can be represented
as

Pd = Ci × f × f + 3Co (9)

whereCi is the number of input channels, f× f is the convolution
kernel size of the deep convolution process, and Co is the
number of output channels. If Ci = 3, f = 3, and Co = 256,
the numbers of weight parameters of CConv and DSC are 6912
and 795, respectively. The number of weight parameters of DSC
is only 11.5% that of CConv.

From the above, DSC can be seen to effectively reduce the
complexity of the model and, however, is not suitable to extract
image features alone. Due to the large reduction of the number
of weight parameters, it may lead to insufficient or incorrect
learning of the network model. Therefore, this article proposes
three ways of combining DSC and CConv to extract image
features, as shown in Fig. 3. The three convolution structures
are based on the network structure of VGG. These convolution

structures first extract image features using CConv, and then
extract deeper feature information using DSC.

According to the LCNN-BFF network structure shown in
Fig. 2, structure 1 is mainly used for Groups 1, 2, 4, and 6;
structure 2 is mainly used for Groups 3–8; and structure 3 is
mainly used for Groups 5 and 7. These combined structures
can not only extract more representative features, but also ef-
fectively avoid the learning problems caused by the reduction
of the number of weight parameters. In addition, in order to
further improve the classification performance, a BFF method
was proposed. This can fuse and complement different feature
information extracted from two branches, which plays a great
role in dealing with the problem of high within-class difference
and between-class similarity.

C. Fusion of Branch Features

In Fig. 2, the BFF method is utilized in Groups 4–7 to fuse
the information of the final convolution results of two branches
after BN processing. Specifically, it can be seen from [57] that
the convolution output of the last layer of a branch is assumed to
be Xc ∈ RN×H×W×C . Take data X = [x1 . . . xm] ∈ RN×H×W

in a channel, and the result after BN layer processing can be
represented as

m = N ×H ×W (10)

μX =
1

m

m∑

i=1

xi (11)

σ2
X =

1

m

m∑

i=1

(xi − μX)
2 (12)

x̂i =
xi − μX√
σ2
X+ε

(13)

yi = γx̂+ β (14)

where m is the number of values of X, μX represents the mean
value of this Group of data, σ2

X represents the variance of this
Group of data, x̂i represents the result of standardizing each
number in data X, yi represents the result of this group of data
processed by BN, and γ and β are a pair of learnable parameters.
After C cycles, the data of all channels are standardized and rep-
resented by Yc ∈ RN×H×W×C . Taking Group 4 as an example,
suppose N = 1. If Y4,1 ∈ RH×W×C and Y4,2 ∈ RH×W×C are
used to represent the 3-D feature maps of the output of the first
and second branches in Group 4, then the 2-D feature map of
any channel in Y4,1 and Y4,2 can be represented as

ξb,i = Y4,b[:, :, i] (15)

∀i ∈ {0, 1, 2, . . . , C − 1} (16)

where Y4,b[:, :, i] is the (i + 1)th 2-D feature map along the
channel dimension in 3-D feature maps (the index number starts
from 0). BFF superimposes the corresponding units from the first
to the Cth 2-D feature map of Y4,1 and Y4,2 to realize feature
fusion, which can be represented as

C−1∑

i=0

H−1∑

m=0

W−1∑

n=0

ξ1,i[m,n] + ξ2,i[m,n]. (17)
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Fig. 4. Schematic diagram of the BFF method.

The schematic diagram of the BFF method is shown in Fig. 4.
In Fig. 4, the BFF method was used to fuse and complement
the feature information of each unit in the feature mapping
process of two branches. BFF can effectively avoid the problem
that some features are not fully extracted or even not extracted.
Certain feature maps extracted by two branches in Group 4 and
that after BFF fusion are shown in Fig. 5. The dark areas of
the feature maps in Fig. 5 are the extracted features from these
scenes. It can be seen from Fig.5 that for the same scene, the
first branch and the second branch extract different features,
and the effect of feature extraction is related to the scene. For
example, the first branch is more effective than the second
branch in extracting beach and ship scenes, and the second
branch has more advantages in extracting airplane and overpass
scenes.

In this article, the features of two branches are fused with
the BFF method, which can extract more abundant feature
information than that of the two branches. Particularly, for the
bridge, golf course, island, and rectangular farm scenes, the
features extracted from the first and second branches are part of
the main features of these scenes. BFF method fuses the features
extracted from the two branches, and obtains the main features in
these scenes. To sum up, the two branches can extract different
features of the image, but the extracted feature information is
only a part of the main features. BFF can fuse and complement
the feature information extracted from the two branches and
obtain more complete features, which can effectively improve
the classification performance of remote sensing scene images.
In addition, BFF does not require parameters, which makes it
more appealing.

IV. EXPERIMENT AND RESULT ANALYSIS

In this section, we comprehensively evaluated the proposed
LCNN-BFF method using different methods. Experiments were
performed on four datasets with high challenge. The perfor-
mance of the proposed method was compared with that of
state-of-the-art methods. The experimental results verified the
effectiveness of the proposed method.

A. Datasets

The UC Merged Land Use (UC) dataset [59] contains
2100 remote sensing scene images, which are divided into
21 scene classes. Each class contains 100 aerial images with
256 × 256 pixels and the spatial resolution of the images is
1 ft. Scene examples of this dataset are shown in Fig. 6. In
the experiment, 80% of the images of each scene class were
randomly selected as a training set, and the rest were divided
into the test set (80/20 UC).

The RSSCN7 (RSSCN) dataset [60] contains 7 scene classes,
with a total of 2800 remote sensing scene images. Each class
contains 400 images with 400× 400 pixels. These images come
from different seasons and weather changes and were sampled
at four different scales. Examples of the scene images in this
dataset are shown in Fig. 7. In the experiment, the image size
was adjusted to 256 × 256. We randomly selected 50% of the
images in each scene class as the training set, and the rest were
divided into the test set (50/50 RSSCN).

The Aerial Image dataset (AID) [61] is composed of 30 scene
classes and 10 000 remote sensing scene images. Each scene
class contains 220–420 scene images with 600× 600 pixels, and
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Fig. 5. Feature maps of some example images.

Fig. 6. Scene examples from the UC Merged Land Use (UC) dataset.

the spatial resolution changes from about 8 to 0.5 m. Examples
of scene images of this dataset are shown in Fig. 8. In the
experiment, the image size was adjusted to 256× 256. 20% and
50% of the images of each scene class were randomly selected
as training sets, and the rest were divided into test sets (20/80
AID, 50/50 AID).

The NWPU-RESISC45 (NWPU) dataset [14] consists of 45
scene classes, with a total of 31 500 remote sensing scene images.
Each scene class contains 700 scene images with 256 × 256
pixels. The spatial resolution of most scene images varies from
30 to 0.2 m. This dataset is one of the largest in both the number
of scene categories and the total number of scene images. The

Fig. 7. Scene examples from the RSSCN7 (RSSCN) dataset.

Fig. 8. Scene examples from the Aerial Image dataset (AID).

Fig. 9. Scene examples from the NWPU-RESISC45 (NWPU) dataset.

rich changes of images lead to high within-class differences
and between-class similarities, which makes this dataset more
challenging. Scene image examples from this dataset are shown
in Fig. 9. In the experiment, 10% and 20% images of each scene
class were randomly selected as training sets, and the rest were
divided into test sets (10/90 NWPU, 20/80 NWPU).

B. Setting of Experiments

The setting of the LCNN-BFF network was as follows. In
Group 1, the number of convolution channels was set to 32, and
the convolution kernel size of each convolution was set to 3× 3.
In Group 2, the number of convolution channels was set to 64,
and the convolution kernel size of each convolution was set to
3 × 3. In Group 3, the number of convolution channels was set
to 128, the convolution kernel size of the first convolution was
set to 1 × 1, and those of the remaining convolutions were set
to 3 × 3. The pool sizes of the max-pooling layers in Groups
1–3 were set to 2 × 2, and pooling stride was 2. The number of
convolution channels in Group 4 was the same as that in Group
3. In the two branches of Groups 4–7, the convolution kernel size
of the first convolution was set to 1 × 1, and those of the other
convolutions were set to 3× 3. The last convolution stride of the
two branches was set to 2, and the remaining convolution strides
were set to 1. The number of convolution channels of Groups
5–7 was set to 256, and Group 8 was set to 512. In Group 8, the
convolution kernel size of the first convolution was set to 1× 1,
the convolution kernel sizes of the remaining convolutions were
set to 3 × 3, and the convolution stride was set to 1.

Data enhancement was employed for the datasets as follows.
1) For the input image, the rotation range was 0–60°.
2) The length and width of the input image were offset

randomly, and the offset coefficient was 0.2.
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TABLE I
COMPARISON OF LCNN-BFF AND MOBILENET WITH THE OA AND KAPPA

The bold entity represents the method with the best performance on a validation metric.

3) We randomly flipped the input image horizontally and
vertically.

After the data enhancements, all the samples were normalized
by batch. In addition, to avoid memory overflow during training,
the sizes of the input images were adjusted to 256 × 256.

The initial learning rate of training the LCNN-BFF network
was set to 0.01. An automatic learning rate reduction mechanism
was added. In the training process, the batch size was set to 16
and the proposed LCNN-BFF was optimized with a momentum
optimization algorithm, and the momentum coefficient was set
to 0.9. All the experimental results are the average values after
ten experiments. The computer configuration was as follows:
RAM: 8 GB; Processor: Intel (R) Pentium (R) CPU G4600 @
3.60 GHz; GPU: NVIDIA GeForce GTX 4G 1050 Ti.

C. Performance of the LCNN-BFF Method

In order to verify the performance of the proposed LCNN-
BFF method, evaluation indexes, including the overall accuracy
(OA), average precision (AP), kappa coefficient (Kappa), F1
score (F1), confusion matrix, average training time (ATT), and
weight parameters (parameters), were utilized in the following
experiments. OA represents the percentage of correctly classi-
fied images in the total test set. AP represents the average of
the accuracy rate of each scenario class on the test set. ATT
represents the average time that a model processes an image
during training.

MobileNet [27] is the basic network of the proposed LCNN-
BFF method. In this work, in order to verify the effectiveness of
bilinear convolution structure and the BFF method, some exper-
iments were conducted using MobileNet and the LCNN-BFF
method on the UC, RSSCN, AID, and NWPU datasets. The
OA, AP, Kappa, F1, and confusion matrix were chosen as the
evaluating indices.

In this article, Keras was used to reproduce the MobileNet
network and the parameters of the last layer were fine-tuned. The
classification performance of the LCNN-BFF and MobileNet
networks evaluated by OA and kappa indexes on six datasets
are listed in Table I. In Table I, the OA and Kappa values of
the proposed method were significantly better than those of Mo-
bileNet. The performance of LCNN-BFF on the UC dataset was
very good, with the OA and kappa values at 99.29% and 99.25%,
respectively. In addition, for the NWPU and AID datasets with

Fig. 10. Performance comparison of LCNN-BFF and MobileNet. (a) Com-
parison of LCNN-BFF and MobileNet on AP. (b) Comparison of LCNN-BFF
and MobileNet on F1.

less data training, the performance advantage of LCNN-BFF
was more prominent, which shows that the proposed method is
more robust. Next, the performance of the proposed method was
evaluated by AP, F1, and a confusion matrix.

The AP and F1 results of the proposed LCNN-BFF method
and MobileNet are shown in Fig. 10. In Fig. 10(a), the AP
values of the LCNN-BFF method are all higher than those of
MobileNet for different datasets. The classification performance
of the LCNN-BFF method on the 50/50RSSCN, 20/80AID,
10/90NWPU, and 20/80NWPU datasets was excellent, with AP
values at 3.59%, 4.29%, 3.78%, and 3.84% higher than those of
MobileNet. The classification performance of the LCNN-BFF
method in Fig. 10(b) was also good, especially on the test sets of
20/80AID, 10/90NWPU, and 20/80NWPU. The F1 scores of the
LCNN-BFF were 4.43%, 3.84%, and 3.86% higher than those of
MobileNet. As shown in Fig.10, the classification performance
of the proposed LCNN-BFF method was always better than that
of the MobileNet network, and the proposed method was more
robust.

The confusion matrices of the proposed LCNN-BFF method
and MobileNet tested on the 80/20UC and 50/50RSSCN datasets
are shown in Figs. 11 and 12. The values on the diagonal
of the confusion matrix represent the precision of each class,
and other values in the same row represent the percentage of
misclassification. In Fig. 11, we can see that the classification
error rate of the LCNN-BFF method was significantly lower
than that of MobileNet. In Fig. 12, the classification accuracies of
each class of the proposed LCNN-BFF method were higher than
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Fig. 11. Confusion matrices of LCNN-BFF and MobileNet on the 80/20 UC test set. (a) Confusion matrix of LCNN-BFF. (b) Confusion matrix of MobileNet.

or equal to those of MobileNet. This proved that the proposed
BFF method was very effective in dealing with the problems of
high within-class differences and between-class similarities in
remote sensing scene images.

The above experiments proved the effectiveness of the pro-
posed method using the OA, kappa, AP, F1, and confusion ma-
trix. This proved that the proposed bilinear convolution structure
and BFF method can significantly improve the classification
performance of remote sensing scene images. In addition, the
bilinear convolution structure and BFF method also improved
the robustness of the classification network.

D. Performance Comparison With the
State-of-the-Art Methods

In this section, the proposed LCNN-BFF method was com-
pared with state-of-the-art methods for remote sensing scene
classification in terms of the model complexity and classification
accuracy. Experiments were performed on the UC, RSSCN,

AID, and NWPU datasets. The OA, parameters, Kappa, and
ATT were used to evaluate these methods. The methods for
comparison can be divided into two categories. One category
is unsupervised feature learning-based methods. In [21], a
variable-weighted multifeature fusion (VWMF) classification
method based on kernel collaborative representation-based clas-
sification (KCRC) and the support vector machine (SVM) was
proposed to solve the problems of high within-class differences
and between-class similarities of remote sensing scene images.

In [44], a multiresolution block feature (MRBF) classification
method based on completed double cross pattern (CDCP) and
Fisher vectors was proposed to solve the problem of complicated
and various scene types and complex backgrounds in scene
images. In [71], Yan et al. introduced semisupervised repre-
sentation learning (SSRL) into a generative adversarial network
(GAN), to have the discriminator learn more discriminative
features from labeled data and unlabeled data. The mixed data
augmentation method was introduced into their classification
model to augment the data and stabilize the training process. As
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Fig. 12. Confusion matrices of LCNN-BFF and MobileNet on the 50/50 RSSCN test set. (a) Confusion matrix of LCNN-BFF. (b) Confusion matrix of MobileNet.

the two methods have difficulty in extracting more representa-
tive features in remote sensing scene images, the classification
accuracy was not high.

The other category is deep CNN feature learning-based meth-
ods, mainly including those presented in [39], [42], [48], [50],
[54], [61], and [63]. Among them, in [47], a Siamese CNN
method based on the CNN recognition and verification model
was proposed, aiming at the existing methods that have difficulty
in extracting rich remote sensing scene label information. On
this basis, a classification method of rotation-invariant feature
learning and joint decision-making method (R.D.) based on the
Siamese CNN was proposed in [43], to improve the classification
accuracy.

The above two methods do not fully consider the important
spatial information of remote sensing scene images, as well
as the problems of high within-class differences and between-
class similarities, which limits the further improvement of the

classification performance. To solve these problems, a new
classification structure, called CNN-CapsNet, was proposed in
[42], and this method combines the advantages of CNN and cap-
sule network (CapsNet). In [62], a gated bidirectional network
(GBNet) was proposed for remote sensing scene classification.
In [50], an end-to-end FACNN was proposed for remote sensing
scene classification.

These three methods greatly improved the classification accu-
racy; however, the model complexity remained relatively high.
In view of the complexity of the model, in [51], some optimal
coding layers in the pretraining networks were explored, and
an ADFF-based method was proposed. In [53], a classification
method of MSCP was proposed. In [54], a classification method
based on a new CNN was proposed, which combines the skip
connect and the covariance pooling (SCCov).

In [72], Cao et al. proposed a new method, called self-
attention-based deep feature fusion (SAFF), to aggregate deep
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TABLE II
COMPARISON OF THE OA AND WEIGHT PARAMETERS ON THE 80/20 UC TEST SET

The bold entity represents the method with the best performance on a validation metric.

layer features and emphasize the weights of the complex objects
of remote sensing scene images for remote sensing scene classi-
fication. In [73], a general positional context aggregation (PCA)
module in deep CNNs was proposed. The PCA module has
the form of a self-attention mechanism, in which two proposed
blocks, the spatial context aggregation and the relative position
encoding, are used to capture the spatial-dipartite contextual
aggregation information and the relative position encoding in-
formation.

Compared with these methods, in this article, we utilized
the bilinear convolution structure to extract the rich feature
information of the scene image, and explore the BFF method to
fuse and complement the differing feature information extracted
from the two branches, which greatly improved the classification
accuracy. In terms of model complexity, three feature extraction
structures were proposed by combining DSC and CConv convo-
lution, which greatly reduced the complexity of the model. Next,
the performance comparison of different classification methods
was explored with experiments.

First, some comparative experiments were performed on the
UC dataset. The results of the OA and the size of the parameters
of the proposed method and state-of-the-art methods are listed in
Table II. In Table II, the average OA of the proposed method was

higher than those of the other methods. Among them, the average
OA of the proposed method was 0.24% higher than those by the
methods in [42], [46], and [54]. From the perspective of the
parameters, the parameters of LCNN-BFF only accounted for
4.61%, 27.27%, and 46.15% of [46], [42], and [54], respectively.
The reason is that, for the proposed LCNN-BFF network, the fea-
ture extraction structure combines two convolution methods, i.e.,
light convolution DSC and CConv, which greatly reduced the
size of the parameters and improved the classification accuracy.

In addition, compared with the current state-of-the-art meth-
ods proposed in [62] and [71]–[73], the proposed method
demonstrated better performance, both in the classification ac-
curacy and weight parameters. The results of the Kappa values
of the proposed method and the state-of-the-art methods on the
UC dataset are listed in Table III. In Table III, the average Kappa
of the proposed method was 99.25%. The performances of the
proposed method on Kappa were 31.25%, 7.25%, and 5.25%
higher than those of the three methods in [47], respectively, and
30.25%, 6.25%, 4.75% higher than those of the three methods
in [43], respectively. With the experimental results of Tables II
and III, we proved that LCNN-BFF had a good classification
performance on the UC dataset from the perspective of the Kappa
index.
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TABLE III
COMPARISON OF THE KAPPA ON THE 80/20 UC TEST SET

The bold entity represents the method with the best performance on a validation metric.

TABLE IV
COMPARISON OF THE OA AND ATT ON THE 80/20 UC TEST SET

The bold entity represents the method with the best performance on a validation metric.

TABLE V
COMPARISON OF THE OA AND PARAMETERS ON THE 50/50 RSSCN TEST SET

The bold entity represents the method with the best performance on a validation metric.

In order to further verify the effectiveness of the proposed
method, we compared the ATT with several state-of-the-art
methods on the UC dataset. The comparison results between
the proposed method and the state-of-the-art methods in terms
of the ATT are listed in Table IV. It can be seen from Table IV that
the proposed method took less time than the compared methods.
The proposed LCNN-BFF network processed an image in 0.029,
0.023, and 0.019 s faster than the two methods in [62]. The ATT

of the proposed method was tested under the condition where the
computer configuration was inferior to the two methods being
compared. Therefore, the ATT result of the proposed method is
not optimal. If better experimental equipment was used, ATT
would be smaller.

Second, experiments are conducted on the RSSCN dataset.
The results of the OA and parameters of the proposed method
and the state-of-the-art methods are listed in Table V. In Table V,
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TABLE VI
COMPARISON OF THE OA AND PARAMETERS ON THE AID TEST SETS

The bold entity represents the method with the best performance on a validation metric.

TABLE VII
COMPARISON OF THE OA AND PARAMETERS ON THE NWPU TEST SETS

The bold entity represents the method with the best performance on a validation metric.

compared with the methods in [21], [48], [58], and [63], the
proposed method had better classification performance. In terms
of the OA, the proposed method was 7.46%, 5.54%, 2.27%,
0.78%, and 0.74% higher than the methods in [61], [21], and
[63], and the two methods in [48], respectively. In terms of
the weight parameters, the total parameters of the proposed
method only accounted for 4.48% of the method in [61] and
26.09% of the two methods in [48]. In addition, the average
OA of the proposed method was slightly lower than that of the
ADFF method [51]. However, the amounts of parameters of
the proposed method only accounted for 26.09% of the ADFF
method.

Finally, we performed experiments on the AID and the
NWPU dataset. The comparison results of the proposed method
and state-of-the-art methods are listed in Tables VI and VII,
respectively. It can be seen from Table VI that whether the
training and testing ratio was 2:8 or 5:5, the average OAs of the
proposed method were higher than those of the other methods.
The OA of the proposed method was slightly lower than that
of the optimal method proposed in [50], [52], and [62], but
in terms of the total parameters of the weight parameters, the
proposed method only required 4.62% of the total parameters
of the optimal method in [50] and [52], and 4.35% of the total
parameters of the optimal method in [62]. The method in [54]
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Fig. 13. Visualization results of LCNN-BFF and MobileNet on the UC dataset. (a) Scene images classified correctly by both methods. (b) Scene images classified
correctly only by LCNN-BFF.

had almost the same amounts of parameters as the proposed
method; however, the OA of was low.

In Table VII, we can see that the OA of the proposed method
was only slightly lower than that of the optimal method in [52].
For the 1:9 and 2:8 training test ratios, the average OA of the
proposed method was 2.69% and 0.16% lower than that of the
optimal method in [52]. However, only 4.61% of the amounts of
parameters of the optimal method in [52] was required for the
proposed method. Most of the comparison methods with high
classification performance in this article adopted the pretraining
method. In [74], Chen et al. indicated that the pretraining CNN-
based models could achieve significantly better classification
performance compared to the CNN models trained from scratch.

The proposed method was directly trained on the remote sens-
ing scene dataset. In most cases, this method could still obtain
higher classification accuracy with lower complexity. This fur-
ther proved the effectiveness of the proposed method. The above-
mentioned experimental data demonstrated that the proposed
method was a simple and effective method for remote sensing
scene classification, in which the complexity and classification
accuracy of the model were considered simultaneously, and were
very suitable for practical application and development.

E. Visual Results of Different Methods

In order to further analyze the proposed method, in this
section, we discuss which part of the feature information of

the scene image is utilized to make the correct classification
decision. For visualizing the outputs of the last convolution
of LCNN-BFF and MobileNet, we selected representative
images from UC and NWPU datasets, and input them into
the LCNN-BFF and MobileNet networks, respectively. The
gradient-weighted class activation mapping (Grad-CAM)
method [64] was adopted for visualization. The visualization
results of the proposed method and MobileNet on the UC and
NWPU datasets are shown in Figs. 13 and 14, respectively.

It can be seen in Figs. 13 and 14 that the six scene images,
including “Tennis court,” “intersection,” “agricultural,” “storage
tank,” “stadium,” and “roundabout,” were misclassified as other
categories by MobileNet. Clearly, the feature regions of interest
(FROIs) extracted by MobileNet were not accurate. The reasons
are as follows.

1) Most of the FROIs were the edges of the main features.
2) The extracted FROIs did not represent the main features

of this category.
3) The extracted FROIs were not abundant and lacked addi-

tional discrimination information.
We use example images to demonstrate this. For “agricul-

tural,” the extracted FROIs by MobileNet were the edges of the
main features of the image, and these regions were scattered.
For “intersection,” the MobileNet could not extract the main
features of this kind of image at all. For “Roundabout,” the
feature regions extracted by MobileNet were incomplete and
lacked other feature information for classification.
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Fig. 14. Visualization results of LCNN-BFF and MobileNet on the NWPU dataset. (a) Scene images classified correctly by both methods. (b) Scene images
classified correctly only by LCNN-BFF.

For the proposed method, the extracted feature information
was more abundant and concentrated. The feature of interest of
the proposed method also included abundant edge information
that can assist in correct classification. This is because LCNN-
BFF used a bilinear convolution structure to extract image
features, which can extract differing feature information through
two different branches. The feature information of the two
branches was fused and complemented, using the BFF method,
and then more abundant and representative feature information
was extracted.

The visualization experiments on the two datasets demon-
strated that the proposed method could extract the features of
the remote sensing scene images more accurately, to help to
solve the problems of within-class differences and between-class
similarities in the classification of remote sensing scene images.

V. CONCLUSION

In the research of remote sensing scene classification, we
proposed a novel network with a bilinear convolution structure
based on a CNN. In addition, the BFF method was proposed
to fuse and complement the feature information extracted from
the two branches to obtain more abundant and representative
feature information. In view of the problem that the bilinear
convolution structure improves the complexity of the model, we
proposed three kinds of convolution structures, which combined

DSC and CConv, to greatly reduce the amounts of parameters
and computational complexity of the model. The proposed
method was compared with MobileNet and other state-of-the-art
methods on four remote sensing scene images using evaluation
indices.

The experimental results demonstrated that the proposed
method provided a good classification performance on the re-
mote sensing scene images. There remain problems that need to
be improved. The extracted feature information can be stacked,
fused, and complemented by the BFF; however, the BFF cannot
selectively fuse effective feature information. This may pro-
duce redundant data and increase the computational complexity.
Future work will further reduce the complexity of the model
and speed up the convergence of the model. The BFF method
can also be improved for the selective fusing of useful feature
information, and thus can accommodate the task of remote
sensing scene classification more intelligently.
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